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Abstract

Curve registration problems in data analysis and com-
puter vision can often be reduced to the problem of match-
ing two functions defined on an interval. Dynamic Pro-
gramming (DP) is an effective approach to solve this prob-
lem. In this paper, we propose a DP algorithm that runs in
O(N) time to compute optimal diffeomorphisms for elas-
tic registration of curves with N nodes. This algorithm
contrasts favorably with other DP algorithms used for this
problem: the commonly used algorithm of quadratic time
complexity, and the algorithm that guarantees a globally
optimal solution with O(N4) time complexity. Key to our
computational efficiency is the savings achieved by reduc-
ing our search space, focusing on thin strips around graphs
of estimates of optimal diffeomorphism. Estimates and
strips are obtained with a multigrid approach: an optimal
diffeomorphism obtained from a lower resolution grid using
DP is progressively projected to ones of higher resolution
until full resolution is attained. Additionally, our DP algo-
rithm is designed so that it can handle nonuniformly dis-
cretized curves. This enables us to realize further savings
in computations, since in the case of complicated curves re-
quiring large numbers of nodes for a high-fidelity represen-
tation, we can distribute curve nodes adaptively, focusing
nodes in parts of high variation. We demonstrate effective-
ness of our DP algorithm on several registration problems
in elastic shape analysis, and functional data analysis.

1. Introduction
Curve registration problems in data analysis and com-

puter vision, e.g., horizontal alignment of chromatograms

by domain warping, computation of elastic shape distances,

can usually be reduced to the problem of matching two

functions defined on an interval I in the real line. The

problem of matching in turn usually involves computing an

orientation-preserving diffeomorphism on the interval I to

match each point in the range of one function with a point in

the range of the other function, and vice versa. This is done

by optimizing with respect to diffeomorphism, a data mis-

match energy defined by data associated with the two func-

tions. Dynamic Programming (DP) is widely recognized

as an effective approach to solve such problems. However,

although it computes globally optimal solutions, it is com-

putationally expensive.

In the context of shape analysis, Srivastava et al. [1, 6, 9]

proposed an algorithm for computing elastic shape distance

between two closed curves in the plane using an O(N2) DP

component for elastic registration of the curves, N the num-

ber of nodes per curve. It is computationally expensive as

its total complexity is O(N3). A faster DP algorithm was

proposed in [2] that works in a reduced search space (still

O(N2) with a small constant), but computes very good dif-

feomorphisms. Note that a DP algorithm that would actu-

ally guarantee a globally optimal diffeomorphism by con-

ducting a complete search would run in O(N4) time.

In what follows, we build on the works [5, 8], and de-

scribe computation in linear time of approximately optimal

diffeomorphisms for elastic registration of curves. The dif-

feomorphisms are not guaranteed to be globally optimal,

but we observed very convincing results in our experiments.

Our DP approach uses concepts in [8], and similarly re-

stricts its search to thin strips around graphs of estimates of

optimal solution. It essentially uses a multigrid approach

that projects, using DP, a diffeomorphism at a low reso-

lution grid to one of higher resolution with this process

continued recursively until a diffeomorphism of full res-

olution is obtained. This results in a fast O(N) DP al-

gorithm. We note, furthermore, that we implemented our

DP to allow for curves of possibly unequal and nonuni-

form discretized domains of definition. In particular, our

algorithm can be used for computing more efficiently elas-

tic shape distances between closed curves in the plane with

algorithms in [1, 9, 2, 3] by replacing their DP components

with ours. We present numerical results showing that our

algorithm is much faster than the aforementioned DP com-

ponents, and that with it, in particular, shape distance com-

putation in [9] is indeed much faster while still producing

distances as good as before. Finally, we present numeri-

cal results from using our algorithm for alignment of chro-

matograms in context of elastic functional data analysis.
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2. Elastic Registration Formulation
For F : [0, 1]× [0, 1]×R→ R, we minimize energies of

the following general form with respect to γ, γ a diffeomor-

phism of [0, 1] onto itself with γ(0) = 0, γ(1) = 1, γ̇ > 0:

E(γ) =

∫ 1

0

F (t, γ(t), γ̇(t))dt. (1)

Many problems we find in applications of computer

vision and scientific data analysis fall in the category

of nonlinear data fitting, in which a target data function

y : R→ R
d is given, and the problem is then that of fit-

ting or registering a model f : R × R → R
d to this

data. This problem is often solved by optimizing (1)

above with respect to γ for F (t, γ(t), γ̇(t)) = ‖y(t) −
f(γ(t), γ̇(t))‖p, p � 1, a nonlinear regression problem.

The elastic curve registration problems that we address in

this paper fall in this category.

In practice, we need to solve a discretized version of the

problem, either because the data itself is discrete, or due to

the need to approximate the functions numerically. Thus,

given a positve integer N , we choose a partition (not nec-

essarily uniform) {tl}Nl=1 of [0, 1], t1 = 0 < t2 < . . . <
tN = 1, and discretize (1) with the trapezoidal rule:

E(�γ) =
1

2

N−1∑
l=1

hl(F (tl+1, γl+1, γ̇l+1) + F (tl, γl, γ̇l)),

(2)

where γ1 = 0, γN = 1, hl = tl+1 − tl, γl = γ(tl), γ̇l =
(γl+1−γl)/hl, for l = 1, . . . , N −1. We also add γ̇N = γ̇1
as a boundary condition for the derivative.

An important question then is the choice of discretiza-

tion points {tl}Nl=1. This impacts both the efficiency and the

Figure 1. Adaptive nonuniform discretization of cell boundary

curves. The curves on the left are high-fidelity uniformly sampled

curves with N = 1024 nodes each. The curves on the right are

adaptively sampled with N = 74 (top) and N = 78 (bottom)

nodes, still maintaining a good representation of the geometry.

accuracy of the solution. We propose an adaptive nonuni-

form discretization scheme that follows the complexity of

the input data. In the case of a curve β(t) : [0, 1] → R of

curvature κ(t), we can sample the curve to obtain nodes

{βl}, compute its discretized curvature {κl} to measure

geometric complexity, and choose discretization points ac-

cordingly. This motivates a two-step procedure

1. Distribute sample nodes {βl} such that pointwise geo-

metric discretization error is below an acceptable tol-

erance: ‖βl − βl−1‖2 ·max(κl, κl−1) < 0.002.

2. Compute lengths between consecutive nodes {βl}, de-

fine arclength parameterization summing up lengths,

and make discretization points associated with

parametrization the choice of {tl}.
Results of this procedure are illustrated in Figure 1.

3. Dynamic Programming (DP)
For positive integers N , M , not necessarily equal, and

possibly nonuniform partitions of [0, 1], {ti}Ni=1, t1 = 0 <
t2 < . . . < tN = 1, {zj}Mj=1, z1 = 0 < z2 < . . . < zM =
1, we consider the N ×M grid on the unit square with grid

points labeled (i, j), i, j integers, 1 ≤ i ≤ N , 1 ≤ j ≤ M ,

each grid point (i, j) coinciding with planar point (ti, zj).
If the mesh of each partition, i.e., max(tm+1 − tm), 1 ≤

m ≤ N−1, andmax(zm+1−zm), 1 ≤ m ≤M−1, is suf-

ficiently small, then the set of diffeomorphisms γ of [0, 1]
onto itself with γ(0) = 0, γ(1) = 1, γ̇ > 0, can be ap-

proximated by the set of homeomorphisms of [0, 1] onto it-

self whose graphs are piecewise linear paths from grid point

(1, 1) to grid point (N,M) with grid points as vertices. We

refer to the latter set as Γ. Then γ in Γ is an approximate

diffeomorphism of [0, 1] onto itself and as such an energy

conceptually faithful to (2) can be defined and computed

for it. This is done one linear component of the graph of γ
at a time.

Accordingly, given grid points (k, l), (i, j), k < i, l < j,

that are endpoints of a linear component of the graph of γ,

an energy of a trapezoidal nature over the line segment join-

ing (k, l) and (i, j) is defined as follows:

E
(i,j)
(k,l) ≡

1

2

i−1∑
m=k

(tm+1 − tm)(Fm+1 + Fm), (3)

Fm ≡ F (tm, α(tm), L)), m = k, . . . , i.

Here α is the linear function from [tk, ti] onto [zl, zj ]whose

graph is the line segment, α(tk) = zl, α(ti) = zj , and L is

the slope of the line segment. Note L =
zj−zl
ti−tk

> 0 as

zj > zl, ti > tk. The energy for γ is then defined as the

sum of the energies over the linear components of the graph

of γ with α in (3) coinciding with γ on each component.
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For the purpose of efficiently computing γ∗ in Γ of min-

imum energy, we present algorithm in next section that uses

DP on grid points in strips around graphs of estimates of γ∗,
one strip at a time. In this algorithm, a general DP proce-

dure, Procedure DP, whose outline follows, is executed, for

each strip, on set R of grid points inside strip. For such sets

computational cost is low (search space is relatively small),

and their selection is such that it is highly likely final DP

solution is γ∗ itself or at least close to it. Since the col-

lection of such strips has the appearance of one single strip

whose shape evolves as it mimics the shapes of graphs of

estimates of γ∗, we think of the collection as indeed being

one single strip, a dynamic strip that we call adapting strip

accordingly. In [2], Dogan, Bernal and Hagwood proposed

using a strip R of linear (O(N)) width around the diagonal

of [0, 1]2 connecting planar points (0, 0) and (1, 1), for a

fast DP algorithm. In this work, rather than rigidly fixing R,

we propose using an adapting strip as described above with

a width that is constant (O(1)) as it evolves around graphs

of estimates of γ∗. Obviously we do not know γ∗, but can

estimate it using DP solutions on coarser grids. However,

before going into the specifics of our proposed algorithm,

we will describe Procedure DP operating on generic R.

The set R of labeled grid points can be any subset of

the interior grid points plus the corner grid points (1, 1),
(N,M). Given any such R, we denote by Γ(R) the set

of elements of Γ with all vertices in R. Accordingly, with

the energy in (3) adjusted for R (see below), given posi-

tive integer layrs (e.g., layrs = 5) which determines the

size of certain neighborhoods to be searched (see below),

then, based on DP, Procedure DP that follows, in O(|R|)
time, will often (depending on layrs) compute optimal γ∗

in Γ(R), |R| the cardinality of R.

As the DP algorithm progresses over the indices (i, j) in

R, it examines function values on indices (k, l) in a trailing

neighborhood N(i, j) of (i, j) (see Figure 2 for a particular

R described below). In the full DP, we would be examining

all (k, l) in R, 1 � k < i, 1 � l < j. This has high com-

putational cost, and is not necessary for our applications.

Using a much smaller square neighborhood N(i, j) of ω
points (ω = layrs) per side gives satisfactory results. Thus,

for each (i, j) in R, we examine at most ω2 indices (k, l)
in the trailing neighborhood N(i, j). Then the overall time

complexity is O(ω2|R|). We formally define N(i, j) by

N(i, j) = {(k, l) ∈ R : k is one of ω largest indices < i

and l is one of ω largest indices < j}.
Note that in the unusual case N(i, j) happens to be empty

then a grid point (k, l) in R, k < i, l < j, perhaps (k, l) =
(1, 1), is identified and N(i, j) is set to {(k, l)}

The DP procedure follows. First, however, we clarify

some implicit conventions in the procedure logic. The main

loop in the DP procedure takes place over the single index i

(not the grid point (i, j)). We process index i in increasing

order of its values, and for each value, each occurrence of

the value is processed before moving to the next one. Also

in the procedure, pairs of indices m1, m2 are retrieved from

an index set M, satisfying m1 < m2 with no other index

inM greater than m1 and less than m2.

procedure DP
E(1, 1) = 0
for each (i, j) �= (1, 1) in R in increasing order of i do

for each (k, l) ∈ N(i, j) do
α = linear function, α(tk) = zl, α(ti) = zj
L = slope of line segment (k, l)(i, j)
M = {m : k ≤ m ≤ i, ∃(m,n) ∈ R}
Fm = F (tm, α(tm), L) for each m ∈M
E

(i,j)
(k,l) =

1
2

∑
m1,m2∈M(tm2

− tm1
)(Fm2

+ Fm1
)

end for
E(i, j) = min(k,l)∈N(i,j)(E(k, l) + E

(i,j)
(k,l))

P (i, j) = argmin(k,l)∈N(i,j)(E(k, l) + E
(i,j)
(k,l))

end for
end procedure

The optimal solution γ∗ in Γ(R) can then be obtained by

backtracking from (N,M) to (1, 1) with pointer P above.

Accordingly, Procedure opt-diffeom that follows, will pro-

duce γ∗ in the form �γ∗ = (γ∗m)
N
m=1 = (γ∗(tm))Nm=1:

procedure opt-diffeom
γ∗N = 1
(i, j) = (N,M)
while (i, j) �= (1, 1) do
(k, l) = P (i, j)
γ∗k = zl
for each integer m, k < m < i do

γ∗m = (ti−tm)
(ti−tk)

zl +
(tm−tk)
(ti−tk)

zj
end
(i, j) = (k, l)

end while
end procedure

The original O(N2) DP algorithm, which we call

original-DP, was used in [1, 6] to compute elastic shape

distances. It is essentially the same as Procedure DP above

(for the proper instance of (2)) followed by Procedure opt-
diffeom, using a uniform grid, N = M , and R equal to

all interior grid points plus the corner grid points (1, 1),
(N,M). Depending on layrs, it computes optimal γ∗ in Γ.

In [2], a cheaper but still O(N2) version of original-DP
called fast-DP, based on the Sakoe-Chiba Band [7], was

presented for the same purpose. It is essentially original-
DP with R equal to the corner grid points (1, 1), (N,M)
plus interior grid points inside a strip S of width d along the

diagonal of unit square from (0, 0) to (1, 1) (see Figure 2).

Depending on layers and d, it computes optimal γ∗ in Γ.
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Figure 2. In fast-DP, R is set of interior grid points in strip

S together with grid points at planar points (0, 0), (1, 1), i.e.,

(1, 1), (N,M). Given (i, j) in R, i, j > 1, then N(i, j) in Pro-

cedure DP is the set of grid points in R on or inside the smaller

square (here covering a 4 × 4 subgrid for layrs = 4) with right

upper vertex (i−1, j−1). Only the grid points in N(i, j) are con-

sidered in Procedure DP for the left lower endpoint of line segment

ending at (i, j) that makes E(i, j) in Procedure DP the smallest.

4. Dynamic Programming Restricted to an
Adapting Strip

The DP algorithms original-DP and fast-DP used in

[1, 9, 2, 3] are essentially the same as Procedure DP (for

the proper instance of (2)), using a uniform grid, N = M ,

and particular sets of grid points for R. Clearly, under these

conditions, the possibility is then precluded of using either

one of them for elastic registration of curves whose defin-

ing point sets have been either refined or coarsened due, for

example, to curvature considerations.

In what follows, working with partitions (not necessar-

ily uniform) of [0, 1], {tl}Nl=1, {zl}Ml=1, as previously de-

scribed, we present a linear algorithm which we call adapt-
DP, based on DP restricted to an adapting strip, to compute

optimal diffeomorphisms for elastic registration of curves.

It has parameters layrs, lstrp, set to small positive integers,

say 5, 30, respectively. Parameter layrs is as previously

described, while lstrp is an additional parameter that deter-

mines width of adapting strip (see below). Although adapt-
DP is not guaranteed to be always successful, it has been

observed to produce convincing results in our experiments.

The original ideas for this algorithm are described in [5, 8]

in the context of graph bisection and dynamic time warping.

As presented below, for a given instance of (2)), adapt-
DP is essentially an iterative process that restricts its search

to the adapting strip around graphs of estimated solutions.

Each iteration culminates with execution of Procedure DP
for recursively projecting a diffeomorphism obtained from

a lower resolution grid to one of higher resolution until

full resolution is attained. For simplicity, we assume here

N = M = 2n + 1 for some positive integer n. Exten-

sion of the algorithm to allow N , M to have any values is

straightforward. Note we don’t assume partitions {tl}, {zl}

are uniform. Finally, after last execution of Procedure DP
in adapt-DP, Procedure opt-diffeom is performed to obtain,

depending on layrs and lstrp, optimal γ∗ in Γ. Algorithm

adapt-DP follows:

algorithm adapt-DP
2. I(1) = J(1) = 1
3. P (N,M) = (1, 1)

for r = 1 to n do
5. NI = NJ = 2r + 1
6. for m = 1 to NI − 1 do
7. I(m+ 1) = m · 2n−r + 1
8. r′m = 1

2 (tI(m) + tI(m+1))
end for
for m = 1 to NJ − 1 do

J(m+ 1) = m · 2n−r + 1
12. s′m = 1

2 (zJ(m) + zJ(m+1))
end for

14. r′1 = s′1 = 0
15. r′NI−1 = s′NJ−1 = 1

(i, j) = (N,M)
D = ∅

18. while (i, j) �= (1, 1) do
(k, l) = P (i, j)

**********************************************

20. Here below, for integers m′, n′, 1 < m′ < NI ,

21. 1 < n′ < NJ , bin B(m′, n′) ≡
22. {(x, y) : r′m′−1 ≤ x ≤ r′m′ , s′n′−1 ≤ y ≤ s′n′}
**********************************************

identify bins B(m′, n′), 1 < m′ < NI ,

1 < n′ < NJ , the interiors of which are

intersected by line segment (i, j)(k, l)

D′ = {(m′, n′) : (i, j)(k, l) ∩B(m′, n′) �= ∅}
D = D ∪D′

(i, j) = (k, l)
end while
R = {(1, 1), (N,M)}

31. for each (m′, n′) in D do
i0 = max{2,m′ − lstrp}
j0 = max{2, n′ − lstrp}
R1 = {(i, j) : i = I(i′), i0 ≤ i′ ≤ m′, j = J(n′)}
R2 = {(i, j) : j = J(j′), j0 ≤ j′ ≤ n′, i = I(m′)}
R = R ∪R1 ∪R2

end for
38. execute procedure DP on R

end for
execute procedure opt-diffeom to obtain γ∗

end algorithm

In outline of adapt-DP above, we note in line 5, NI starts

equal to 3 (for r = 1) and then it is essentially doubled at

each iteration r > 1 until it becomes equal to N at the

nth iteration. We note in line 2 and in line 7 inside for
loop at line 6, range of I starts with 3 integers (for r = 1)
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and then essentially doubles in size at each iteration r > 1,

contains previous range of I from preceding iteration, and

is evenly spread in the set {1, 2, . . . , N} until it becomes

this set. We note as well from the well-known sum of a

geometric series that since N = 2n + 1 then the sum of the

NI’s, i.e., (21 + 1) + (22 + 1) + . . .+ (2n + 1), is O(N).
Clearly, all of the above applies to NJ , M , and range of J .

We note while loop at line 18 identifies certain cells in the

Voronoi diagram [11] of the set of grid points R′ ≡ {(i, j) :
i = I(m′), j = J(n′), 1 < m′ < NI , 1 < n′ < NJ} re-

stricted to the unit square. Indeed bin B(m′, n′) as defined

in lines 20-22, in terms of the computations in lines 8, 12,

14, 15, is exactly the Voronoi cell of (I(m′), J(n′)), and all

such cells together partition the unit square. Accordingly,

with γ∗ encoded in P in line 3 (r = 1) or in line 38 (r > 1)

through the execution of Procedure DP in the previous it-

eration (r − 1), it must be that every point in the graph of

γ∗ is in some bin B(m′, n′). Thus, it then seems reason-

able to say that a reliable region of influence of γ∗ is the

region around the graph of γ∗ formed by the union of bins

within a constant number of bins from the graph. Accord-

ingly, to be precise, a bin B is part of this region if and only

if there is a bin B′, the interior of which the graph of γ∗

intersects, B within a constant number (lstrp) of bins from

B′, B directly below or to the left of B′, or B equal to B′

(see Figure 3). We note that identifying this region is essen-

tially accomplished in while loop at line 18 and for loop at

line 31, with the region understood to be the union of bins

or Voronoi cells B(m′, n′) of grid points in R at the end of

for loop. Clearly, the region contains the graph of γ∗, and

has the appearance of a strip whose shape evolves from one

iteration to the next as it closely mimics the shape of the

graph of γ∗ (see Figure 3), thus it is referred to as an adapt-

ing strip. Finally, we note that at the end of for loop, γ∗

in Γ(R) ⊆ Γ(R′) encoded in P for current iteration is ob-

tained in line 38 with Procedure DP restricted to the region

or adapting strip, a region that as just described depends on

all previous γ∗ functions from previous iterations. The last

γ∗ obtained is then, depending on layrs, optimal in Γ(R),
and, depending on layrs and lstrp, in Γ(R′).

With γ∗ as above during the execution of while loop at

line 18 for iteration r, we note that since γ∗ is in Γ(R) then

the number of bins B(m′, n′) whose interiors the graph of

γ∗ intersects must be O(NI +NJ), which is also the time

required to find them one linear component of the graph

at a time. Since |R| at end of for loop at line 31 is then

O(lstrp) ·O(NI +NJ), i.e., O(NI + NJ), complexity

of Procedure DP at line 38 is then O(NI +NJ), and since

as mentioned above the sum of the NI’s and NJ’s is O(N)
and O(M), respectively, then the complexity of adapt-DP
must be O(N +M), implying adapt-DP is linear.

Figure 3. On left is γ∗ from 2nd iteration, NI = NJ = 22+1 =
5. In center, during 3rd iteration, NI = NJ = 23 + 1 = 9;

shaded bins are bins the interior of which γ∗ intersects. On right,

shaded bins form adapting strip in which next γ∗ is computed.

Each shaded bin is within 2 bins (lstrp = 2) from a bin whose

interior current γ∗ intersects, below or to the left of it or equal to it.

5. Applications and Experiments

In this section, we illustrate the effectiveness of Algo-

rithm adapt-DP with several benchmarks and applications.

We first compared it to original-DP [1, 9] and fast-DP [2]

on synthetic applications. We examined both the computa-

tion times, and the accuracy of the solutions. Then we tested

it on two important applications: elastic shape distances be-

tween 2d closed curves, and domain warping for alignment

of functional data, specifically chromatograms. We report

our findings in the respective subsections.

5.1. Synthetic Benchmarks

We evaluated adapt-DP using five synthetic curves in

Figure 4 and γ functions shown in Figure 5. The γ
functions were chosen to be difficult, having either small

or steep gradients or both. We compared the results

with those from original-DP and fast-DP. Given γ func-

tion, we reparametrized synthetic curve β2 with it to ob-

tain β1 = β2(γ), and then with each algorithm tried

to recover the discrete solution γ from the shape func-

tions q1, q2 of β1, β2, respectively (see Subsection 5.2 for

definition of shape functions), using F (t, γ(t), γ̇(t)) =
‖q1(t) −

√
γ̇(t)q2(γ(t))‖2 in (1). For various values of N

(64, 128, 256, 512, 1024, 2048), and associated values of

layrs (64, 32, 16, 12, 12, 12, respectively), with lstrp =
20, we executed each algorithm, timed computations, and

computed the L2 error between the true solution γ∗ and the

computed γ, i.e., 1
N−1 (

∑N−1
l=1

(
γ(tl)− γ∗(tl))2

) 1
2 . Algo-

rithm adapt-DP not only computed reasonable γ∗ functions

for all synthetic curves (L2 errors were less than 10−3), but

was much faster than the other algorithms for N ≥ 256 (see

Figure 5 and Table 1).

5.2. Computation of Elastic Shape Distances

An elastic shape framework was introduced in [9] for

finding geodesics in the shape space of closed curves and

computing geodesic distances between elements of that

space. Let closed curves βi : [0, 1] → R
2, i = 1, 2 be

of class C2 and unit length. As each βi is closed, it sat-
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Figure 4. Curve examples used in the experiments. Synthetic

curves: super ellipse, hippopede, bumps, limaçon, clover (top

row); biological cell boundaries of type A and B (middle and

bottom rows).

Figure 5. For γflat (left column in blue), original-DP, fast-DP
with d ≈ 0.3

√
2, and adapt-DP computed a reasonable γ∗ (top

left in red, L2 error less than 10−3), but fast-DP with d ≈ 0.2
√
2

did not (bottom left, γ∗ in red). The same can be said for γsteep

(middle column in blue). For γbumpy (right column in blue),

original-DP, fast-DP with d ≈ 0.3
√
2 and with d ≈ 0.2

√
2 com-

puted a reasonable γ∗ (top right in red, L2 error less than 10−3).

The same was true for adapt-DP which computed a slightly dif-

ferent γ∗ (bottom right in red).

N = 64 128 256 512 1024 2048

layrs = 64 32 16 12 12 12

o-DP all γ 0.49 1.26 1.00 2.07 8.48 34.3

f-DP all γ 0.24 0.66 0.51 1.04 4.20 17.0

a-DP γflat 0.65 0.67 0.27 0.29 0.57 1.20

γsteep 0.65 0.56 0.28 0.31 0.62 1.32

γbumpy 0.81 1.04 0.37 0.36 0.70 1.46

Table 1. Times (in seconds) for limaçon with original-DP (o-
DP), fast-DP (f-DP) with d ≈ 0.3

√
2, and adapt-DP (a-DP). For

o-DP and f-DP, the times depend only on N , not on γ, whereas

for a-DP, the times depend on the shape of γ as well.

isfies βi(0) = βi(1), β̇i(0) = β̇i(1). We define qi(t) =
β̇i(t)/‖β̇i(t)‖1/2 to be the shape function or square-root

velocity function (SRVF) of βi. Then the elastic shape

distance between β1 and β2 is defined as the L2 angle
〈q̂1,q̂2〉L2

‖q̂1‖L2‖q̂2‖L2
between the optimally aligned SRVFs q̂1, q̂2,

q̂1(t) = R(θ)q1(t + t0), q̂2(t) =
√
γ̇(t)q2(γ(t)), where t0

is the optimal seed or starting point, R(θ) is the 2 × 2 ro-

tation matrix defined by the optimal rotation angle θ, and

γ is the optimal reparameterization function (see [3]). The

triple (t0, θ, γ) for optimal alignment is then obtained by

minimizing the mismatch energy:

E(t0, θ, γ) =

∫ 1

0

‖R(θ)q1(t+ t0)−
√
γ̇(t)q2(γ(t))‖2dt.

(4)

Note that, for fixed t0, θ, (4) is in the same form as (1) for

F (t, γ(t), γ̇(t)) = ‖R(θ)q1(t+t0)−
√
γ̇(t)q2(γ(t))‖2. We

use the trapezoidal rule to write a discretized version of the

mismatch energy (4),

Eh(t0, θ, �γ) = h
N−1∑
l=1

‖R(θ)q1(tl + t0)−
√

γ̇lq2(γl)‖2,
(5)

essentially adapting (2) to this particular case.

In practice, the curves βi are available as discrete sets

of curve nodes. In order to obtain the continuous SRVFs

qi needed in (5), we first compute discrete derivatives β̇i

with centered finite differences, and then compute the cor-

responding qi, which we interpolate with cubic splines.

The minimization of (5) to obtain the optimal triple

(t0, θ, �γ) is the most critical part of the shape distance com-

putation. Although a globally optimal triple is required to

compute the correct theoretical distance, a practical opti-

mization algorithm to accomplish this goal is not available.

Instead, various local optimization approaches have been

proposed. The approach in [9] is to loop through the start-

ing point t0 candidates, to compute for each t0 candidate

the optimal rotation angle θ (assuming identity for initial

�γ), and then to compute the optimal reparameterization �γ
for each fixed pair (t0, θ) with DP, which is the most ex-

pensive step as it is O(N2) for each pair. This optimization

scheme is a direct search algorithm with total time complex-

ity of O(N3). Faster iterative algorithms were proposed in

[4] and [2, 3]. In [4], Huang et al. used Riemannian opti-

mization to achieve faster computation times and improved

minimization results as compared to the direct search ap-

proach in [9]. In [2, 3], Dogan et al. proposed an alternating

optimization algorithm that optimizes (t0, θ) with FFT, and

�γ with an iterative solver based on constrained nonlinear

optimization using the interior point method and initialized

with fast-DP. They were able to demonstrate subquadratic

running times in experiments. In this paper, we would like

to demonstrate the efficiency gains from our new DP algo-

rithm when used to compute elastic shape distances. For

this purpose, we adopted the O(N3) algorithm in [9], and

replaced its O(N2) original-DP step with our O(N) adapt-
DP. We were able to show improvement by an order of mag-

nitude in computation times, while still computing shape

distances as good as the original algorithm.
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In order to examine scalability with respect to N , we

computed with algorithm in [9] the shape distance between

two synthetic curves, hippopede and bumps (see Figure 4),

using original-DP and adapt-DP. Results are given in Ta-

ble 2. The shape distances from both approaches agree very

well. But we see that computation times with original-DP
grow cubically, whereas with adapt-DP grow quadratically.

For N = 256, 512 we then computed 10 × 10 pairwise

shape distance matrices for cell boundary curves in Fig-

ure 4 as well, and observed the same efficiency gains. Al-

gorithm in [9] with adapt-DP had total computation time

that is a fraction of what it had with original-DP: 17 min,

1 hr by adapt-DP vs 50 min, 7 hrs by original-DP for

N = 256, 512 respectively. A 5 × 5 submatrix of the dis-

tance matrix for N = 512 is shown in Table 3.

Additionally, we verified that adapt-DP indeed handles

nonuniform discretizations correctly and produces results

as good as the uniform case. For this, we took two cell

boundary curves in Figure 4, β1, the rightmost curve in mid-

dle row, and β2, the rightmost curve in bottom row. We

resampled them uniformly with equal numbers of nodes

N1 = N2 = 257, and with F (t, γ(t), γ̇(t)) = ‖q1(t) −√
γ̇(t)q2(γ(t))‖2 in (1), computed �γ with adapt-DP for op-

timal matching, and E(�γ), the value of mismatch energy

for �γ. We repeated this experiment for the nonuniform dis-

cretization of these curves obtained with the two-step proce-

dure in Section 2. Optimal energy values and computation

times are given below. Numerical results in the nonuniform

case are as good as those of the uniform case at half the cost

of computation time.

N1 N2 E(�γ) time

Uniform 257 257 0.3786 0.291s

Nonuniform 163 149 0.3628 0.138s

5.3. Function Alignment by Warping

In the context of elastic functional data analysis, a frame-

work was introduced in [10] for domain warping of func-

tions in order to align them optimally by matching critical

features, such as peaks.

For i = 1, 2, let fi : [0, 1]→ R be functions in an appro-

priate space of functions (e.g., the space of absolutely con-

tinuous functions), and let qi : [0, 1]→ R be the square-root

slope function (SRSF) of fi: qi(t) = sign(ḟi(t))
√
|ḟi(t)|,

t ∈ [0, 1] (see [10]). Note the SRSF is the form the SRVF

takes as fi is real-valued.

As established in [10] the warping function γ that makes

f2(γ) the optimal alignment of f2 to f1 is obtained by min-

imizing the following energy with respect to γ:

E(γ) =

∫ 1

0

(q1(t)−
√
γ̇(t)q2(γ(t)))

2dt, (6)

Timings for Dist(hippopede, bumps)
N = 64 128 256 512

original-DP 0.50 3.53 28.7 227

adapt-DP 0.57 2.35 9.7 40

Timings for Dist(bumps, hippopede)
original-DP 0.56 3.74 30.2 228

adapt-DP 1.04 2.88 10.3 46

Values for Dist(hippopede, bumps)
original-DP 1.052 1.043 1.042 1.037

adapt-DP 1.048 1.040 1.042 1.037

Values for Dist(bumps, hippopede)
original-DP 1.128 1.114 1.101 1.091

adapt-DP 1.129 1.114 1.101 1.091

Table 2. The numerical values and running times (in seconds) for

the elastic shape distance between the two synthetic curves: hip-

popede and bumps for increasing N .

.580/.580 .545/.542 .557/.555 .510/.507 .543/.541

.509/.508 .526/.524 .498/.496 .478/.478 .541/.539

.540/.540 .620/.619 .580/.580 .515/.513 .585/.585

.596/.596 .541/.540 .580/.579 .565/.564 .582/.580

.497/.496 .545/.544 .512/.509 .468/.467 .542/.541

Table 3. Matrix of pairwise shape distances of type A (rows) and

type B (columns) cells. The first and second values of a pair com-

puted using original-DP and adapt-DP, respectively.

where as before γ is a diffeomorphism of [0, 1] onto it-

self with γ(0) = 0, γ(1) = 1, γ̇(t) > 0. Note that (6)

is in the same form as (1) for F (t, γ(t), γ̇(t)) = (q1(t) −√
γ̇(t)q2(γ(t)))

2.

In [12] the alignment of chromatograms using the frame-

work in [10] described above was demonstrated on liquid

chromatography-mass spectrometry data for a chromato-

graphically complex metabolomic reference sample. Com-

putational results were presented in [12] from aligning two

chromatograms in this manner. The chromatograms were

taken in immediate succession under the conventional high

performance liquid chromatography (HPLC) protocol de-

scribed in [12]. As reported there, for chromatograms hav-

ing 1,000 points, the aligning took 10 seconds on a desktop

computer. In this work, we addressed much larger chro-

matograms (19,000+ points) for which original-DP was im-

practical. We aligned such chromatograms in a few minutes

using adapt-DP with lstrp = 150 and layrs = 12 (see

Figure 6). Timings for these experiments are given below:

Chromatogram 1 Chromatogram 2 time

Pair 1 19,713 pts 19,759 pts 180s

Pair 2 19,759 pts 26,474 pts 270s

Pair 3 19,693 pts 19,763 pts 172s
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Figure 6. On left of each row, two chromatograms, one in blue and

one in red of nonuniform time domains. In center, chromatograms

in blue aligned to chromatograms in red after executions of adapt-
DP. On right, plots of optimal piecewise warping functions.

6. Conclusions

In this paper, we propose a fast linear Dynamic Program-

ming (DP) algorithm to compute optimal diffeomorphisms

for elastic registration of curves. Although we cannot guar-

antee that it will always compute a globally optimal solu-

tion, we have observed very convincing results in our exper-

iments. This algorithm which we call adapt-DP is based on

ideas in [5, 8] in the context of graph bisection and dynamic

time warping. We achieve considerable savings in compu-

tations and very favorable run times by restricting its search

to thin strips around graphs of estimated solutions. It is es-

sentially an iterative process that starts with a diffeomor-

phism computed at a very low resolution grid, projects at

each iteration current diffeomorphism to one of double res-

olution using DP, and ends when a diffeomorphism of full

resolution is obtained. This process runs with linear asymp-

totic time complexity with respect to the number of nodes

on the given curves. We note, furthermore, adapt-DP has

been implemented to allow for curves of possibly unequal

and nonuniform discretized domains of definition. We use

this flexibility to our advantage, to achieve further savings

in computations, by not working with uniformly discretized

curves, but with nonuniformly discretized curves of fewer

nodes, as we concentrate nodes on parts with high curva-

ture, and not so much on flat parts. We demonstrate the ef-

ficiency of adapt-DP with several examples. We achieve an

order of magnitude gain in speed when we perform elastic

shape analysis proposed in [9] with adapt-DP. We achieve

even larger speed gains when we use adapt-DP for the

alignment of chromatograms with large numbers of sample

points. In particular, for chromatograms of 20,000 points,

we show this can be done in approximately 3 minutes.

A copy of adapt-DP with example data files and usage

instructions can be obtained from the link:

http://math.nist.gov/˜JBernal
/Fast_Dynamic_Programming.zip We note

that as currently implemented, adapt-DP uses only

F (t, γ(t), γ̇(t)) = ‖q1(t) −
√

γ̇(t)q2(γ(t))‖2 in (1),

q1, q2 : [0, 1]→ R
d, d = 1 or 2.
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